Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(8): eadj0975, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381833

RESUMO

Breast cancer often metastasizes to bone, causing osteolytic lesions. Structural and biophysical changes are rarely studied yet are hypothesized to influence metastasis. We developed a mouse model of early bone metastasis and multimodal imaging to quantify cancer cell homing, bone (re)modeling, and onset of metastasis. Using tissue clearing and three-dimensional (3D) light sheet fluorescence microscopy, we located enhanced green fluorescent protein-positive cancer cells and small clusters in intact bones and quantified their size and spatial distribution. We detected early bone lesions using in vivo microcomputed tomography (microCT)-based time-lapse morphometry and revealed altered bone (re)modeling in the absence of detectable lesions. With a new microCT image analysis tool, we tracked the growth of early lesions over time. We showed that cancer cells home in all bone compartments, while osteolytic lesions are only detected in the metaphysis, a region of high (re)modeling. Our study suggests that higher rates of (re)modeling act as a driver of lesion formation during early metastasis.


Assuntos
Neoplasias Ósseas , Osteólise , Animais , Camundongos , Microtomografia por Raio-X/métodos , Neoplasias Ósseas/complicações , Neoplasias Ósseas/secundário , Osso e Ossos/diagnóstico por imagem , Osteólise/diagnóstico por imagem , Osteólise/etiologia , Osteólise/patologia , Modelos Animais de Doenças , Linhagem Celular Tumoral
2.
Biomater Adv ; 151: 213423, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37167748

RESUMO

In nature, tissues are patterned, but most biomaterials used in human applications are not. Patterned biomaterials offer the opportunity to mimic spatially segregating biophysical and biochemical properties found in nature. Engineering such properties allows to study cell-matrix interactions in anisotropic matrices in great detail. Here, we developed alginate-based hydrogels with patterns in stiffness and degradation, composed of distinct areas of soft non-degradable (Soft-NoDeg) and stiff degradable (Stiff-Deg) material properties. The hydrogels exhibit emerging patterns in stiffness and degradability over time, taking advantage of dual crosslinking: Diels-Alder covalent crosslinking (norbornene-tetrazine, non degradable) and UV-mediated peptide crosslinking (matrix metalloprotease sensitive peptide, enzymatically degradable). The materials were mechanically characterized using rheology for single-phase and surface micro-indentation for patterned materials. 3D encapsulated mouse embryonic fibroblasts (MEFs) allowed to characterize the anisotropic cell-matrix interaction in terms of cell morphology by employing a novel image-based quantification tool. Live/dead staining showed no differences in cell viability but distinct patterns in proliferation, with higher cell number in Stiff-Deg materials at day 14. Patterns of projected cell area became visible already at day 1, with larger values in Soft-NoDeg materials. This was inverted at day 14, when larger projected cell areas were identified in Stiff-Deg. This shift was accompanied by a significant decrease in cell circularity in Stiff-Deg. The control of anisotropic cell morphology by the material patterns was also confirmed by a significant increase in filopodia number and length in Stiff-Deg materials. The novel image-based quantification tool was useful to spatially visualize and quantify the anisotropic cell response in 3D hydrogels with stiffness-degradation spatial patterns. Our results show that patterning of stiffness and degradability allows to control cell anisotropic response in 3D and can be quantified by image-based strategies. This allows a deeper understanding of cell-matrix interactions in a multicomponent material.


Assuntos
Fibroblastos , Hidrogéis , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Comunicação Celular , Materiais Biocompatíveis
3.
Bone ; 161: 116432, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569733

RESUMO

The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal, as well as cortical and trabecular bone of the distal femur and proximal tibia are shown. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.


Assuntos
Osso e Ossos , Tíbia , Animais , Densidade Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Camundongos , Camundongos Nus , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Imagem com Lapso de Tempo , Microtomografia por Raio-X/métodos
4.
J Biomech ; 128: 110714, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534790

RESUMO

Radical resection remains the only curative treatment option in pancreatic cancer. Postoperative pancreatic fistulas (POPF) occur in up to 30% of patients leading to prolonged hospital-stay, increased cost of care and morbidity and mortality. Mechanical properties of the pancreas are associated with POPF. The aim of this study is to analyze the role of extracellular matrix (ECM) and tissue mechanics in the risk of POPF. Biopsies of 41 patients receiving a partial pancreas-resection are analyzed. Clinical data, ECM components and mechanical properties are correlated with POPF. Preoperative cholestasis is correlated with reduced risk of POPF, which comes along with a dilatation of the pancreatic duct and significantly higher content of collagen I. Patients developing POPF exhibited a degenerated tissue integrity, with significantly lower content of fibronectin and a trend for lower collagen I, III, IV and hyaluronic acid. This correlated with a soft tactile sensation of the surgeon during the intervention. However, this was not reflected with tissue mechanics evaluated by ex vivo uniaxial compression testing, where a significantly higher elastic modulus and no effect on the stress relaxation time were found. In conclusion, patients with cholestasis seem to have a lower risk for POPF, and an increase in collagen I. A degenerated matrix with lower content of structural ECM components correlates with increased risk of POPF. However, ex vivo uniaxial compression testing failed to clearly explain the link of ECM properties and POPF.


Assuntos
Fístula Pancreática , Pancreaticoduodenectomia , Matriz Extracelular , Humanos , Pâncreas , Fístula Pancreática/etiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fatores de Risco
6.
Sci Rep ; 11(1): 13455, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188099

RESUMO

Biophysical cues such as osmotic pressure modulate proliferation and growth arrest of bacteria, yeast cells and seeds. In tissues, osmotic regulation takes place through blood and lymphatic capillaries and, at a single cell level, water and osmoregulation play a critical role. However, the effect of osmotic pressure on single cell cycle dynamics remains poorly understood. Here, we investigate the effect of osmotic pressure on single cell cycle dynamics, nuclear growth, proliferation, migration and protein expression, by quantitative time-lapse imaging of single cells genetically modified with fluorescent ubiquitination-based cell cycle indicator 2 (FUCCI2). Single cell data reveals that under hyperosmotic stress, distinct cell subpopulations emerge with impaired nuclear growth, delayed or growth arrested cell cycle and reduced migration. This state is reversible for mild hyperosmotic stress, where cells return to regular cell cycle dynamics, proliferation and migration. Thus, osmotic pressure can modulate the reversible growth arrest and reactivation of human metastatic cells.


Assuntos
Neoplasias da Mama/metabolismo , Divisão Celular , Pressão Osmótica , Ubiquitinação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Metástase Neoplásica
7.
Acta Biomater ; 115: 185-196, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32736118

RESUMO

Hydrogels with patterned biophysical and biochemical properties have found increasing attention in the biomaterials community. In this work, we explore alginate-based materials with two orthogonal crosslinking mechanisms: the spontaneous Diels-Alder reaction and the ultraviolet light-initiated thiol-ene reaction. Combining these mechanisms in one material and spatially restricting the location of the latter using photomasks, enables the formation of dual-crosslinked hydrogels with patterns in stiffness, biomolecule presentation and degradation, granting local control over cell behavior. Patterns in stiffness are characterized morphologically by confocal microscopy and mechanically by uniaxial compression and microindentation measurement. Mouse embryonic fibroblasts seeded on stiffness-patterned substrates attach preferably and attain a spread morphology on stiff compared to soft regions. Human mesenchymal stem cells demonstrate preferential adipogenic differentiation on soft surfaces and osteogenic differentiation on stiff surfaces. Patterns in biomolecule presentation reveal favored attachment of mouse pre-osteoblasts on stripe regions, where thiolated cell-adhesive biomolecules have been coupled. Patterns in degradation are visualized by microindentation measurement following collagenase exposure. Patterned tissue infiltration into degradable regions on the surface is discernible in n=5/12 samples, when these materials are implanted subcutaneously into the backs of mice. Taken together, these results demonstrate that our hydrogel system with patterns in biophysical and biochemical properties enables the study of how environmental cues affect multiple cell behaviors in vitro and could be applied to guide endogenous tissue growth in diverse healing scenarios in vivo. STATEMENT OF SIGNIFICANCE: Hydrogels with patterns in biophysical and biochemical properties have been explored in the biomaterials community in order to spatially control or guide cell behavior. In our alginate-based system, we demonstrate the effect of local substrate stiffness and biomolecule presentation on the in vitro cell attachment, morphology, migration and differentiation behavior of two different mouse cell lines and human primary cells. Additionally, the effect of degradation patterns on the in vivo tissue infiltration is analyzed following subcutaneous implantation into a mouse model. The achievement of patterned tissue infiltration following the hydrogel template represents an important step towards guiding endogenous healing responses, thus inviting application in various tissue engineering contexts.


Assuntos
Alginatos , Osteogênese , Animais , Fibroblastos , Hidrogéis , Camundongos , Engenharia Tecidual
8.
Tissue Eng Part A ; 26(15-16): 852-862, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046626

RESUMO

Biomaterials with tunable biophysical properties hold great potential for tissue engineering. The adaptive immune system plays an important role in bone regeneration. Our goal is to investigate the regeneration potential of cell-laden alginate hydrogels depending on the immune status of the animal model. Specifically, the regeneration potential of rat mesenchymal stromal cell (MSC)-laden, void-forming alginate hydrogels, with a stiffness optimized for osteogenic differentiation, is studied in 5-mm critical-sized femoral defects, in both T cell-deficient athymic Rowett Nude (RNU) rats and immunocompetent Sprague Dawley rats. Bone volume fraction, bone mineral density, and tissue mineral density are higher for athymic RNU nude rats 6 weeks postsurgery. In addition, these animals show a significantly higher number of total cells and cells with non-lymphocyte morphology at the defect site, while the number of cells with lymphocyte-like morphology is lower. Hydrogel degradation is slower and the remaining alginate fragments are surrounded by a thicker fibrous capsule. Ossification islands originating from alginate residues suggest that encapsulated MSCs differentiate into the osteogenic lineage and initiate the mineralization process. However, this effect is insufficient to fully bridge the bone defect in both animal models. Alginate hydrogels can be used to deliver MSCs and thereby recruit endogenous cells through paracrine signaling, but additional osteogenic stimuli are needed to regenerate critical-sized segmental femoral defects.


Assuntos
Alginatos , Regeneração Óssea , Hidrogéis , Imunocompetência , Imunidade Adaptativa , Animais , Densidade Óssea , Diferenciação Celular , Modelos Animais de Doenças , Fêmur , Ácidos Hexurônicos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais , Osteogênese , Ratos , Ratos Sprague-Dawley
9.
Biomaterials ; 217: 119294, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276949

RESUMO

Enzymatically-degradable materials recapitulate the dynamic and reciprocal interactions between cells and their native microenvironment by allowing cells to actively shape the degradation process. In order to engineer a synthetic 3D environment enabling cells to orchestrate the degradation of the surrounding material, norbornene-modified alginate was crosslinked with two different peptide crosslinkers susceptible to cleavage by matrix metalloproteinases using UV-initiated thiol-ene chemistry. Resulting hydrogels were characterized for their initial mechanical and rheological properties, and their degradation behavior was measured by tracking changes in wet weight upon enzyme incubation. This process was found to be a function of the crosslinker type and enzyme concentration, indicating that degradation kinetics could be controlled and tuned. When mouse embryonic fibroblasts were encapsulated in 3D, cell number remained constant and viability was high in all materials, while cell spreading and extensive filopodia formation was observed only in the degradable gels, not in non-degradable controls. After implanting hydrogels into the backs of C57/Bl6 mice for 8 weeks, histological stainings of recovered gel remnants and surrounding tissue revealed higher tissue and cell infiltration into degradable materials compared to non-degradable controls. This alginate-based material platform with cell-empowered enzymatic degradation could prove useful in diverse tissue engineering contexts, such as regeneration and drug delivery.


Assuntos
Alginatos/farmacologia , Movimento Celular , Hidrogéis/farmacologia , Metaloproteinases da Matriz/metabolismo , Especificidade de Órgãos , Animais , Contagem de Células , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/efeitos dos fármacos , Peptídeos/química , Reologia
10.
Biomaterials ; 181: 189-198, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086448

RESUMO

Degradable biomaterials aim to recapitulate the dynamic microenvironment that cells are naturally exposed to. By oxidizing the alginate polymer backbone, thereby rendering it susceptible to hydrolysis, and crosslinking it via norbornene-tetrazine click chemistry, we can control rheological, mechanical, and degradation properties of resulting hydrogels. Chemical modifications were confirmed by nuclear magnetic resonance (NMR) and the resulting mechanical properties measured by rheology and unconfined compression testing, demonstrating that these are both a function of norbornene coupling and oxidation state. The degradation behavior was verified by tracking mechanical and swelling behavior over time, showing that degradation could be decoupled from initial mechanical properties. The cell compatibility was assessed in 2D and 3D using a mouse pre-osteoblast cell line and testing morphology, proliferation, and viability. Cells attached, spread and proliferated in 2D and retained a round morphology and stable number in 3D, while maintaining high viability in both contexts over 7 days. Finally, oxidized and unoxidized control materials were implanted subcutaneously into the backs of C57/Bl6 mice, and recovered after 8 weeks. Histological staining revealed morphological differences and fibrous tissue infiltration only in oxidized materials. These materials with tunable and decoupled mechanical and degradation behavior could be useful in many tissue engineering applications.


Assuntos
Alginatos/química , Química Click/métodos , Hidrogéis/química , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular
11.
Acta Biomater ; 60: 50-63, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739546

RESUMO

In-situ tissue regeneration aims to utilize the body's endogenous healing capacity through the recruitment of host stem or progenitor cells to an injury site. Stromal cell-derived factor-1α (SDF-1α) is widely discussed as a potent chemoattractant. Here we use a cell-free biomaterial-based approach to (i) deliver SDF-1α for the recruitment of endogenous bone marrow-derived stromal cells (BMSC) into a critical-sized segmental femoral defect in rats and to (ii) induce hydrogel stiffness-mediated osteogenic differentiation in-vivo. Ionically crosslinked alginate hydrogels with a stiffness optimized for osteogenic differentiation were used. Fast-degrading porogens were incorporated to impart a macroporous architecture that facilitates host cell invasion. Endogenous cell recruitment to the defect site was successfully triggered through the controlled release of SDF-1α. A trend for increased bone volume fraction (BV/TV) and a significantly higher bone mineral density (BMD) were observed for gels loaded with SDF-1α, compared to empty gels at two weeks. A trend was also observed, albeit not statistically significant, towards matrix stiffness influencing BV/TV and BMD at two weeks. However, over a six week time-frame, these effects were insufficient for bone bridging of a segmental femoral defect. While mechanical cues combined with ex-vivo cell encapsulation have been shown to have an effect in the regeneration of less demanding in-vivo models, such as cranial defects of nude rats, they are not sufficient for a SDF-1α mediated in-situ regeneration approach in segmental femoral defects of immunocompetent rats, suggesting that additional osteogenic cues may also be required. STATEMENT OF SIGNIFICANCE: Stromal cell-derived factor-1α (SDF-1α) is a chemoattractant used to recruit host cells for tissue regeneration. The concept that matrix stiffness can direct mesenchymal stromal cell (MSC) differentiation into various lineages was described a decade ago using in-vitro experiments. Recently, alginate hydrogels with an optimized stiffness and ex-vivo encapsulated MSCs were shown to have an effect in the regeneration of skull defects of nude rats. Here, we apply this material system, loaded with SDF-1α and without encapsulated MSCs, to (i) recruit endogenous cells and (ii) induce stiffness-mediated osteogenic differentiation in-vivo, using as model system a load-bearing femoral defect in immunocompetent rats. While a cell-free approach is of great interest from a translational perspective, the current limitations are described.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Quimiocina CXCL12 , Fêmur , Hidrogéis , Osteogênese/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Quimiocina CXCL12/química , Quimiocina CXCL12/farmacocinética , Quimiocina CXCL12/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Feminino , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Ratos , Ratos Sprague-Dawley , Células Estromais/metabolismo , Células Estromais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...